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Hey! Skip the math!
just read page 12!!!



Overview

In early 1988, Garrett
Brown asked Arnold DiGuilio
to write an article for the
summer 1988 issue of The
Steadicam Letter on the real
mathematics that describe a
Steadicam’s behavior.

For the past 15 years,
Garrett and I have taught
dynamic balance to hundreds of
operators, and we have radi-
cally improved our practical
methods and explanations.

Arnold’s mathematics
were complete and accurate.
However, Arnold’s wonderfully
compact explanation left many
non-mathematically inclined
folks scratching their heads.

Many operators have never
even seen this article, and a lot
of confusion and misinforma-
tion still exist about dynamic
balance today.

Therefore, it seems to be a
good time to offer everyone in
the Steadicam community a
solid understanding of dynamic
balance, including a full re-
working of the basic physics
and mathematics.

What is dynamic balance?
How does one get a sled into
dynamic balance? How impor-
tant is dynamic balance? What
are the real physics and math-
ematics that explain how a
Steadicam behaves, both
statically and dynamically?

This is an attempt to answer
these questions in a reasonably
full and complete manner.

First, we need some defini-
tions to ensure we are all on
common ground. Second, I will
discuss – in some detail –  the
physics and mathematics of
dynamic balance.

In the last section, I will
describe a foolproof and easy
way to get any Steadicam into
good dynamic balance and a
non-mathematical conceptual
model of dynamic balance.

Although the math section
is admittedly a chore to wade
through, I believe all serious
practitioners of “the art of
Steadicam” will greatly benefit
from a thorough understanding
of the subject.

Definitions

A Steadicam is in static
balance when, at rest, it hangs
with the central post vertical,
regardless of the position of the
gimbal on the central post.

An exception: If the sled is
perfectly balanced top to
bottom, it won’t hang vertically
any more than it will hang at
any other angle.

A Steadicam is in dynamic
equilibrium if, when rotated
about the central post, it pans
consistently on that axis.

A Steadicam is in dynamic
balance when it is in dynamic
equilibrium and also in static
balance. Both conditions must
be met for dynamic balance.

Dynamic balance does not
describe how fast or slow a
Steadicam will pan when a
force is applied. That is a
separate – but related and
important – subject of inertia.

A Steadicam can often be in
static balance – i.e., it will hang
perfectly upright – and not be
in dynamic equilibrium, and
therefore it will not be in
dynamic balance.

In this condition, the rig
will behave very oddly when it
is panned.  Prior to 1988, this is
how Steadicams were routinely
balanced (and designed!)
because, in part, the Steadicam
wasn’t considered a quickly
rotating object. Today, opera-
tors routinely do whip pans
with rotational speeds in the
order of 100  to 150 rpm’s, and
dynamic balance is critical for
this type of work.

 A minor note: It is possible
for a Steadicam to be in dy-
namic equilibrium and not be in
static balance. While this
condition is possible to achieve
on planet earth, it is useful only
in outer space when the
Steadicam is weightless.
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Let’s begin our discussion
with two objects that are not
Steadicams. This approach
makes it easier to understand
the concepts of static and
dynamic balance.

Later we will examine a
simple, three mass Steadicam,
and we will use the math to put
it into dynamic balance.

The physics and the math

The figures below, 1a, 1b,
and 1c, represent an object with
four weights on a common
plane at the end of an axle,
suspended by a gimbal. These
weights are “coplanar.”

Why is dynamic balance
important?

As an operator, one wants
to be able to frame shots with
precision. Properly balancing
the Steadicam increases the
precision of one's operating.

If a Steadicam is out of
dynamic balance, the operator
constantly must make adjust-
ments to keep the Steadicam
level as it is panned. These
adjustments reduce the preci-
sion of operating and can affect
the quality or feel of the shot.
The more the Steadicam is out
of dynamic balance, the greater
the corrective adjustments.

A Steadicam in dynamic
balance will pan perfectly on its
own, without constant adjust-
ments by the operator. More
precise pans and framing are
the result.

Put another way, a
Steadicam in dynamic balance
will take full advantage of the
excellent bearings and careful
construction of the gimbal.

Dynamic balance
fundamentals

Every component on the
sled has a mass (or weight) and
a position relative to all the
other components. The major
and most massive components
are the battery, the monitor, and
the camera.

Other components include
the electronics, the junction
box, the Steadicam’s structural
elements, and any accessories
such as a small VCR, a receiver
for follow focus control, or a
video transmitter.

Each component has an
effect on both static balance
and dynamic equilibrium.

Each component also has an
effect on the inertial quality, or
"feel," of the Steadicam.

These effects can be repre-
sented mathematically, and a
mathematical formula can be
used to describe and/or find
dynamic balance.

We can also use our under-
standing of the math to set up a
rig and to test for dynamic
balance empirically, without
solving any equations.

Depending on the
Steadicam model, the operator
may have very few or a lot of
choices in positioning the major
components.

The operator first positions
the major components in the
best possible configuration for
the shot, and then the operator
balances the sled both statically
and dynamically.

But before we get ahead of
ourselves, let’s first look at the
forces that affect static balance
and dynamic equilibrium.
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If the weights W
1
 = W

3
 and

W
2
 = W

4
 and the distances from

the axle to the weights (the
radii) are the same, it will hang
vertically and be in dynamic
balance. Sounds logical, but
why?

Let’s simplify further, and
examine a two mass object
suspended from the top of the
axle and free to rotate and
pivot. Figure 2a essentially
represents a Model I Steadicam
without a camera, hanging from
its gimbal.

The down arrows represent
the force of gravity acting on
the object. If the object is not
rotating, then the object will
hang perfectly vertical if

(1)   W1R1 = W2R2

This is our basic formula
for static balance.

Note: I am numbering the
equations in (blue type) to
make it easier to keep track of
them. Equations in red type
are the most important ones.

The formula for centrifugal
force is

(2)   F = MRΩ2

where M is the mass of the
object, R is the radius from the
c.g. of the object to the axis of
rotation, and Ω (Omega) is the
angular velocity. A common
unit for this is rpm.

The centrifugal forces, F
1

and F
2
, pull the object in the

direction of the arrows.

It is very, very important to
understand that the centrifugal
forces don’t make the object
rotate. The centrifugal forces
are created because of the
rotation, and these forces grow
with the square of the rotational
speed (Ω).

If the object was in static
balance (i.e., W

1
R

1
 = W

2
R

2
),

then it would be in dynamic
balance if the action of the two
centrifugal forces on the axle
were equal, i.e.,

(3)   F
1
L

1
 = F

2
L

2

The equation is not F
1
 = F

2
.

How much a centrifugal force
tilts the axle depends upon how
far away from the pivot – or
reaction point – the force is
applied to the axle.

Here is a practical way to
demonstrate why the distances
to the reaction point (the L

1
 and

L
2
 of figure 2b) matter:

Balance your Steadicam
statically. Take your finger and
poke it at the gimbal, just
below the bearings. This is
close to the reaction point – and
the force has little effect on the
rig.

Using the same amount of
force, poke the rig far from the
gimbal. Big effect!

Hey, that’s leverage for you,
and why we use F times L in
our formulas.
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Also note: The force of
gravity continues to affect the
object as it spins.

If we spin the object, a
second force is created. This
force is the centrifugal force.
See figure 2b.
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We need to assign a con-
vention to the way these forces
act on the object.

We will call the forces
“positive” if they tilt the object
“up” as in figure 2c.

If all the forces that are
“positive” equal all the forces
that are “negative” then the
object won’t tilt as it is rotated,
i.e., it will be in dynamic
equilibrium. The formula:

(4a)   F2L2 + W1R1

          = F1L1 + W2R2

Substitute MRΩ2 for F

(4b)   (M
2
R

2
Ω2)L

2
 + W

1
R

1

       = (M
1
R

1
Ω2)L

1
 + W

2
R

2

Because mass and weight
are proportional, we can substi-
tute weight for mass and get

(4c)   (W2R2Ω
2)L2 + W1R1

= (W1R1Ω
2)L1 + W2R2

We will come back to
formula 4c, the basic formula
for dynamic equilibrium, again
and again.

Before we move on, take a
look at figure 2e.

Now the L’s = zero, and
therefore these centrifugal
forces will not tilt the Steadi-
cam, even if they were un-
equal!!

Mathematically, if L
1 
and L

2

equal zero, then (4c) becomes

(4d)   (W
2
R

2
Ω2)0 + W

1
R

1
 =

(W
1
R

1
Ω2)0 + W

2
R

2

which becomes

(4e)   W
1
R

1
 = W

2
R

2

 In figure 2e, both F’s are in
the same horizontal plane. The
object would tilt only if the
static forces, W

1
R

1
 and W

2
R

2
,

were unequal.

Now let’s examine another
object with 2 masses, but this
time the masses are not copla-
nar. Figure 3a essentially
represents a Model III Steadi-
cam with a raised monitor and
no camera attached.

Note that I’ve also changed
the two radii, just for fun.
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We will call the forces
“negative” if they tilt the object
“down,” as in figure 2d.

Note: In the real world, we
would have to run around the
object as it rotated to maintain
the “side view” in all these
diagrams.

 We’ve moved the reaction
point down to the horizontal
plane of the two weights.

new reaction point
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fig 2e
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fig 2c
“positive” forces

fig 2d
“negative” forces
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If this object is stationary, it
will remain vertical if the static
forces are equal.

This is our old formula,

(1)  W
1
R

1
 = W

2
R

2.

Note that static balance
does not change no matter how
much W

2 
is raised above W

1
.

There are no “L’s” in the
formula for static balance.

Figure 3b represents the
centrifugal forces acting on this
object.

 Remember  F = MRΩ2, and
substituting W for M, we get

(4c)   (W
2
R

2
Ω2)L

2
 + W

1
R

1
 =

(W
1
R

1
Ω2)L

1
 + W

2
R

2

If it is in static balance,
W

1
R

1
 = W

2
R

2
.

Thus, equation 4c becomes

 (4f)   (W
2
R

2
Ω2)L

2
  =

(W
1
R

1
Ω2)L

1

Note that all the terms on
one side of the equation are
equal to the terms on the other
side except L

2
 and L

1
.

Because L
2
 is less than L

1
,

(W
2
R

2
Ω2)L

2 
must be less than

(W
1
R

1
Ω2)L

1
, and therefore

equation 4f cannot be satisfied.

This means if our two mass
object has its masses on differ-
ent horizontal planes, it can not
be in dynamic equilibrium if it
is in static balance.

But – thank goodness – a
three (or more) mass object
with masses on different hori-
zontal planes, such as a
Steadicam – can be balanced
dynamically.

It’s time to examine a
simple three mass object – an
object similar to a good old
Model III Steadicam with a
camera attached.

Look at the next three
diagrams. Figure 3c represents
all the “positive” forces.

This object will be in
dynamic equilibrium if

(4a)   F
2
L

2
 + W

1
R

1

   = F
1
L

1
 + W

2
R

2

But it can’t be. Why?

F
1

fig 3b

F
2

fig 3c
“positive” forces

W
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F
2

Figure 3d represents all the
“negative” forces.

fig 3d
“negative” forces
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2

Figure 3e represents all the
forces and factors relevant to
dynamic balance.

fig 3e
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We will call the masses by
name (camera, monitor, and
battery) and look at the forces
affecting the Steadicam both
statically and dynamically.

Figure 4a represents our
simple Steadicam and the
various forces and factors that
would act upon it.

It is drawn with the camera
c.g. to the right of the central
post, but we don’t really know
yet where to place the camera.

Just as with our two mass
object, to be in static balance,
the static forces must cancel
each other out, i.e., add up to
zero. Remember which forces
are “+” and which are “–.”

(5)   – W
m
R

m 
+ W

b
R

b

          + W
c
R

c
 = 0

Just as with our two mass
object, all the forces must add
up to zero if it is in dynamic
equilibrium.

(6a)   F
m
L

m
 – W

m
R

m

   – F
b
L

b
 + W

b
R

b

   – F
c
L

c
 + W

c
R

c
 = 0

or, substituting WRΩ2 for F,

(6b)   (W
m
R

m
Ω2)L

m
 – W

m
R

m

 – (W
b
R

b
Ω2)L

b
 + W

b
R

b

– (W
c
R

c
Ω2)L

c
 + W

c
R

c
 = 0

That’s a lot of variables!

However, if we choose our
reaction point carefully, we can
solve the equations.

Our first step is to make the
reaction point at the same
horizontal plane as the camera
c.g., as in figure 4a.

Now, L
c
 = 0. Therefore,

(W
c
R

c
Ω2)L

c
 = 0. And if the

object is in static balance,
– W

m
R

m 
+ W

b
R

b
 + W

c
R

c
 = 0.

So we can remove both
“zero” elements from equation
6b and get equation 7a.

(7a)   (W
m
R

m
Ω2)L

m

    – (W
b
R

b
Ω2)L

b
  = 0

or, expressed another way,

(7b)   (W
m
R

m
Ω2)L

m
 =

(W
b
R

b
Ω2)L

b

Since Ω2 appears in both
terms, we can eliminate that as
well, and we get

(7c)   (W
m
R

m
)L

m
 =

(W
b
R

b
)L

b

Note that equations 7a, 7b,
and 7c have no factors that
depend on the camera weight or
radius!!
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This means that the proper
placement of the monitor and
the battery (the terms of equa-
tion 7c) will not change, re-
gardless of the weight of the
camera. They only depend on
L

m
 and L

b, 
which are related to

the vertical position of the c.g.
of the camera.

 We will first use equation
7c to find where to place the
battery radius (R

b
), and then we

can solve equation 5 to find the
camera radius (R

c
).

Note: We could use equa-
tion 7c to solve for any of the
variables, but there’s a reason
we generally use equation 7c to
solve for R

b
.

On page 3 we said, “The
operator first arranges or
positions the major components
to the best possible positions
for the shot, and then the
operator balances the sled both
statically and dynamically.”

So let’s try an example:
First we weigh the camera,
battery, and monitor, and we
determine the position of their
respective c.g.’s.

Next we choose the monitor
radius and length for viewing
and inertial purposes.

Then we choose the battery
length because we need the sled
to be a certain length (for
instance, we want the lens high
so we make the sled longer).

To finally put the Steadicam
into dynamic balance, we need
to find the battery radius and
the camera radius. We first find
R

b
 by solving equation 7c.

Then we can substitute the
value of R

b
 into equation 5, and

we can calculate the required
value of R

c
.

When the battery and the
camera are set to these values,
the Steadicam will be in perfect
dynamic balance.

Remember, the reaction
point may be moved anywhere
on the axis of the post without
disturbing dynamic balance.
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To illustrate, let’s assign
some values. These are values
that are fixed, or values that we
can determine by choice.

Values that are fixed

W
c 
 = 25#

W
m
 = 6#

W
b
 = 5#

Values that we can choose
to some extent (depends on our
Steadicam, of course)

L
m
 = 20 inches

L
b
  = 30 inches

R
m
 = 10 inches

See figure 4b.

6#

25#

5#

?? R
c

30 inches

20 inches

10 inches

fig 4b

reaction point

?? R
b
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First, we use equation 7c to
find the battery radius (R

b
).

(7c)  (W
b
R

b
)L

b
 = (W

m
R

m
)L

m

(7d)  R
b
 = (W

m
R

m
)L

m

              (W
b
L

b
)

R
b
 = (6 x 10) x 20

       (5 x 30)

R
b
 =  8 inches

Now we can use equation 5
to find the camera radius (R

c
).

(5a)   – W
m
R

m
 + W

c
R

c

      + W
b
R

b
 = 0

(5b)  W
c
R

c
 = W

m
R

m
 – W

b
R

b

(5c)  R
c
 = W

m
R

m
 – W

b
R

b

    W
c

R
c
 = (6 x 10) – (5 x 8)

25

R
c
  =  0.8 inches

If we set R
c
 to 0.8 inches,

and we set R
b
 to 8 inches, the

Steadicam will be in both static
balance and dynamic equilib-
rium, i.e., in dynamic balance.

Now that we’ve solved
equations 7c and 5, we can
demonstrate that moving the
reaction point has no effect on
dynamic balance.

As an example, let's move
the reaction point six inches
lower down the post, to where a
gimbal might be placed. See
figure 4c.

We start by restating the
equation 6b, our formula for
dynamic equilibrium:

(6b)   (W
m
R

m
Ω2)L

m
 – W

m
R

m

– (W
b
R

b
Ω2)L

b
 + W

b
R

b

  – (W
c
R

c
Ω2)L

c
 + W

c
R

c
 = 0

Again, if it is in static
balance, the static terms equal
zero. The Ω2 appears in each
remaining term, so we can
eliminate Ω2, and we are left
with equation 8.

(8)    (W
m
R

m
)L

m
 – (W

c
R

c
)L

c

             – (W
b
R

b
)L

b
 = 0

Dropping the reaction
point six inches means that now

L
m
 = 14,  L

c
 = minus 6,  and

L
b
 = 24

Substituting these values
into equation 8, we get

(6 x 10) x 14
  – (25 x 0.8) x (– 6)

– (5 x 8) x 24 = 0

or

 840  + 120  – 960 = 0

Which demonstrates that
the Steadicam will remain in
perfect dynamic balance,
regardless of where we place
the gimbal on the central post.

fig 4c

5#

6#

25#

0.8 inches

24 inches

14 inches 10 inches

new reaction point

8 inches

6 inches
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We have now discussed all
the basic physics and math-
ematics that we need to under-
stand dynamic balance.

But if we want a better
mathematical model, all the
major masses should be ac-
counted for in the equations.

The Steadicam of figure 4c
is only a three mass object. We
have not accounted for the
electronics, or the J-box, or the
structure of the Steadicam, or
any accessories we might add
to the sled.

Each of these masses has a
static effect and, when the
Steadicam is rotated, each mass
creates a centrifugal force. In
figure 5a, we are illustrating
what happens when just two
more masses are added to the
structure.

In our convention of plus
and minus forces, a mass
forward of the post (like the
monitor) will have a positive
centrifugal force and a negative
static force.  A mass added to
the rear (like the battery) will
have a negative centrifugal
force and a positive static force.

As depicted in figure 5a, the
focus motor receiver has a
positive F

f
 and a negative W

f
R

f
.

The electronics package has a
negative F

e
 and a positive W

e
R

e
.

Each force must be added
into the two balance equations.

Reworking our static
formula (5) to account for the
focus receiver and the electron-
ics, we now get

(9)   – W
m
R

m 
+ W

b
R

b
 +

W
c
R

c 
– W

f
R

f
 + W

e
R

e
 = 0

and our dynamic equilib-
rium formula (6a) becomes

(10)   F
m
L

m
 – W

m
R

m
 – F

b
L

b

+ W
b
R

b
 – F

c
L

c
 + W

c
R

c
 + F

f
L

f
 –

W
f
R

f
 – F

e
L

e
 + W

e
R

e 
 = 0

We would solve these
equations in the same manner
as before, by starting with
equation 10 and assuming the
sled is in static balance.  We
would then remove the static
elements and substitute MRΩ2

for F, and W for M.

Again we would solve the
equations for the proper battery
radius, and then use that value
in equation 9 to solve for the
camera radius.

If we want to sufficiently
model the Steadicam, we
should account for the J-box of
the Steadicam, significant
structural components, and
every accessory we might add
or remove. For instance, the
Ultra’s computer program
accounts for five major compo-
nents, any camera, and three
accessories.

It’s clear that solving these
equations quickly becomes a
nightmare, unless one has a
computer program.

L
e

W
e

F
e

F
f

W
f

R
f

R
e

L
f

reaction point

Fig 5a



If we have a sled that
allows us many choices in the
configuration of major compo-
nents, we can use the math to
make a setup chart for various
modes – long, short, medium
length, monitor high or low,
monitor extended, with and
without a VCR attached, etc.
We can use the chart to quickly
get the sled very close to
dynamic balance.

If we have a sled with
relatively few choices in the
configuration of major compo-
nents, we can use the math to
discover how to add accessories
in a manner that will continue
to make it possible to achieve
dynamic balance.

If we have some sort of
customized hybrid conglomera-
tion of parts, we can check to
see if this sled can get into
dynamic balance in all its
configurations, or if we should
go back to the shop and make
some new parts.

We can use the math to
understand why dynamic
balance in low mode can be just
as easy to achieve as dynamic
balance in high mode.

And that’s just a start....

Without measuring or
weighing anything, or solving
any equations, our under-
standing of the math can
make our life – both on and
off set – much, much easier.

If we understand the basic
theory, we can quickly and
easily position the sled compo-
nents very closely to a condi-
tion of good dynamic balance.

We also can use our knowl-
edge to closely predict what
changes we need to make if we
move a major component, or if
we add an accessory, change
lenses, or tilt the monitor, etc.

We can use the theory to
know that after moving a
component, all we ever have to
do to get back into dynamic
balance is to move the battery
in or out a bit, and then static
balance with the camera.

We can use the theory to
know how to add or place
components on the sled where
it doesn’t make it difficult or
impossible to get the sled into
dynamic balance.

We can use the math to
understand why a given camera
will always be placed in a very
narrow range of positions.

We can use the math to
avoid tests and procedures that
are irrelevant or wasteful of our
time and energy.
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Some practical limitations

Our mathematical model is
rather simple, and doesn’t
account for many things,
including wind effects, or the
uneven distribution of mass in a
given object. For instance, not
all internal parts of a monitor
have the same density, so the
monitor doesn’t behave exactly
like a tiny, very dense mass at
the c.g.

The key thing to remember
is that our formulas are only a
model of reality.

So why did we just go
through all that math?

Because the math clearly
describes the major forces
affecting dynamic balance.

Because over the last 15
years, this model has been
proven to be an extremely
useful tool. In spite of its
simplicity, the model works
extremely well in practice,
where it all matters.

For instance, using the math
(and a Palm Pilot™ computer
to solve the equations), one can
generally place the battery
within .25 inch of the ideal
position. A quick spin test can
fine tune the system to the
needed degree of precision.

But that’s only one minor
reason that the math and theory
are important.



Mount the camera to the
dovetail, and add all lenses,
mags, film, motors, etc., to the
camera. Mark the fore-aft c.g.
position.

Position all the components
on the sled, making sure they
all line up in a single vertical
plane fore and aft, i.e., don’t
add components to the side of
the sled.

If you have a choice, make
the sled the length you want.
Position the monitor high or
low,  and/or in or out, to the
best possible advantage for the
shot.
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A simple,
empirical method

to get
any Steadicam

into
dynamic balance

Mount the camera to the
stage, and slide the camera so
that the camera c.g. is about .75
inch to the rear of the centerline
of the central post.

 Place the gimbal on the
balancing stud of your stand
and balance top to bottom so
that you have a relatively long
drop time, say 3 to 4 seconds.

Balance precisely side to
side by moving the camera.

Balance fore and aft as best
as you can using the battery.
This is very important.

Now fine tune the fore and
aft balance using the camera.

Be sure to get the rig into
very good static balance, both
side to side and fore and aft.

Give it a few spins, but not
too fast a spin, say 20 to 40 rpm
to start. If you are close to
dynamic balance, you can spin
it as fast as you want.

If it’s not in acceptable
dynamic balance, move the
battery in or out about .25 inch.
Static balance with the camera
and try again. Is it better or
worse? Change it again until
your rig pans consistently on
the axis of the post.

Done.

A good tip: make a note of
the camera radius, and the
procedure will be even faster
the next time.



This whole balancing
process should take about two
minutes. Do not spin the cam-
era at excessive speeds and do
not fuss too much.

If you change lenses, add
focus motors, etc. to the cam-
era, the sled will be out of
dynamic balance, but usually
only very, very slightly. Mov-
ing the camera fore and aft to
restore static balance will keep
you in good dynamic balance.
Why?

The placement of the
battery only depends on the
vertical distance of the compo-
nents to the c.g. of the camera
(as in formula 7d), not on the
camera’s weight or radius.

(7d)  R
b
 = (W

m
R

m
)L

m

              (W
b
L

b
)

Changing lenses or adding
focus motors, glass filters, etc.
usually doesn’t change the
vertical c.g. of the camera very
much; therefore it will not
affect the proper placement of
the battery very much either.

We can easily determine
where to place the “altered
camera” by static balancing on
the stand. Note that the math
we would use to determine the
camera radius, formula 5c, is an
expression of static balance.

(5c)  R
c
 = W

m
R

m
 – W

b
R

b

        W
c
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Now let’s look at a simple,
non-mathematical model for
understanding dynamic
balance.

Figure 6a looks like the
Model I or the SK. The camera
c.g. is centered over the post;
the monitor and battery are on
the same horizontal plane, and
their common c.g. –  the red dot
– is under the post. This unit is
in dynamic balance.

Figure 6b looks like a
Model III in dynamic balance.
The battery c.g. is closer to the
post, and the camera c.g. has
moved to the rear.

Why?? See the third figure.

Fig 6a

In figure 6b, the monitor
radius remains the same, but
the monitor raised a bit.

In figure 6c, the monitor
has been raised all the way up
in front of the camera. The
common monitor and camera
c.g. – another red dot – is now
over the post, the battery’s c.g.
is under the post, and this
Steadicam also is in dynamic
balance.

Figure 6c is an absurd
arrangement, of course, but it
makes a point. As the monitor
is raised, the camera c.g. must
move to the rear and the battery
c.g. must move towards the
post.

A rule of thumb: If the
monitor is raised about 25 to 30
percent of the way up from the
battery level, the camera c.g.
will be about .75 inch behind
the centerline of the central
post, more or less.

Fig 6c

Fig 6b



If we shorten the rig (or
just raise the monitor), the
monitor is raised a greater
percentage of the total distance
from the battery to the camera.
Therefore the battery will be
moved forward, and the camera
further to the rear, as it is in
figure 6e.
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What to do if we make the
sled longer or shorter?

Assume we have a sled in
dynamic balance. If we extend
the sled by moving both the
battery and monitor away from
the camera, we create a new
situation. It is useful to think in
terms of how much – percent-
age wise – the monitor is raised
above the battery.

As in figure 6d, the moni-
tor is raised by a smaller
percentage of the total distance
from the battery to the camera
than before. Therefore, the
battery will be more to the rear,
and the camera moved forward.

What to do if we add
accessories?

Our simple method of
getting a rig into dynamic
balance, the non-mathematical
conceptual model on page 13,
and our mathematical model all
attempt to place the battery in
the right position as the first
step to get a rig into dynamic
balance.

Therefore, when I add an
accessory, I like to think of how
the placement of the accessory
will change how much “work”
the battery must do to achieve
dynamic balance.

Thus, if an accessory is
added in front of the post, the
battery must “work harder” to
counteract this mass and its
forces, and I would move the
battery more to the rear. See
figure 6f. Also, the lower the
accessory is placed, the harder
the battery has to work.

Fig 6e

If an accessory is added
behind the post, as in figure 6g,
it “helps” the battery do its
work.

Therefore I would move
the battery forward before I
would static balance with the
camera and spin test for dy-
namic balance.

Fig 6f

Fig 6g

Fig 6d
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Using a dynamic balance
program

Some things not to do
if you want your sled to be in

dynamic balance

Do not add components to
the side of the rig, and do not
balance side to side using
anything other than the camera
mounting stage. Why?

Take another look at figure
7a (the same figure as 1c).

The components W
2
 and W

4

can represent accessories
mounted on each side of a sled.
The forces they generate act to
tilt the post sideways, not fore
and aft like all the others we
have been discussing.  W

2
 and

W
4
 create an entire new set of

forces that must also be equal,
just as the “fore and aft” forces
have to be equal for dynamic
balance.

While it is possible to do
the math (with a computer, of
course) to determine where to
position the battery and camera,
it is quite difficult to determine
empirically what to do. Should
one move the battery – and/or
the camera – side to side to
correct a problem, or fore and
aft, or some combination of the
two? There is no way to know.

Worse yet – for dynamic
balance – is to balance side to
side with the battery. Assuming
the other rig components are
nicely organized fore and aft, if
the operator balances side to
side with the battery, it means
that the camera c.g. was dis-
placed to the other side for
static balance. See figure 7b.

fig 7a (back end view)

W
4

W
2

fig 7b (back end view)

We have created a situation
identical to that of figures 3a
through 3e. We’ve already
shown that this arrangement of
masses cannot be in dynamic
equilibrium if it is in static
balance, i.e., it can not be in
dynamic balance. (See pages 5
and 6.)

The Model I, II, and III
Steadicams “wagged” their
batteries side to side. If one was
lucky, the camera was mounted
on the dovetail so that the
camera’s c.g. was close to the
axis. But from the perspective
of dynamic balance, it wasn’t a
good design.

A computer program for
dynamic balance is a great
educational tool. It will show
exactly what happens to the
battery and camera radii when
any specific change is made to
the sled. It will demonstrate
which changes make a lot of
difference, and which do not.

A good dynamic balance
program can also help an
operator get the rig into dy-
namic balance quickly, regard-
less of the many possible
configurations of the rig. A
good program accounts for all
the major masses of the Steadi-
cam, any camera, and for many
accessories.

As the Steadicam is
reconfigured on set, the opera-
tor only has to take three new
measurements (at most), and
the computer determines the
exact placement of the battery
and the camera.  Spin balancing
is generally unnecessary, which
is really great if you flip to low
mode and lengthen the sled.



A static test for dynamic
balance?

Alas, it can not be done.
The centrifugal forces are not
created until the rig is rotated.
All static tests – no matter how
finely conducted – can only
account for static forces. If you
don’t spin it, the centrifugal
forces don’t exist. How else can
I say it? For instance, if you lay
the sled horizontally, the test
(fig 8) is exactly like the static
test of figure 2e. (See page 5.)
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the sled, or only pairs of com-
ponents carefully balanced on
the same horizontal plane. The
simple procedure on page 12,
however, works with any
Steadicam in any configuration.

Trimming for headroom

Operators should always
use the balance of the Steadi-
cam to get a shot.

Often we deliberately move
the camera to set the sled at
some angle other than vertical.
If the shot has only slow pans,
the centrifugal forces are small,
and it may be far more impor-
tant to have the sled hang at a
given angle than to be in
dynamic balance.

On the other hand, try this
test. Get your rig into perfect
dynamic balance on the stand.
Then move the camera forward
to tilt the sled (and the camera)
a few degrees and give it a
good spin. What happens? The
rig behaves very strangely, very
quickly.

Tilting the monitor

Try this test: Get the rig
into perfect dynamic balance on
the stand, then tilt the monitor
and spin it again.

Unless the monitor tilts on
its c.g., both the L

m
 and the R

m

of the equations have changed,
and the sled will no longer be
in dynamic balance.

If a static test “works,” it is
only because the rig is in a
unique configuration, with the
monitor and battery on the
same horizontal plane.

Additionally there must be
either no other components on

If you want to angle the
camera up or down and also
remain in dynamic balance, you
need either an integral tilt head
or a wedge plate. See the Ultra
Manual for more information
about an integral tilt head.

fig 9
tilting a Model III monitor

W
b

R
m

R
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W
m

reaction point

fig 8 (back end view
w/ horizontal post)

new reaction point

F
1

fig 2e
(side view)
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Try the test with the sled
both very long and short. What
happens now?

This monitor tilts close to
its c.g., so that tilting it has very
little effect on the dynamic
balance of the sled.



A couple of extra things

Here is a quick and easy
method (no math!) for getting
your sled into dynamic balance
when the monitor is displaced
sideways, or you want the
camera facing a direction other
than forward.

The conceptual trick is to
think in terms of all the c.g.’s –
the black dots of our diagrams.
In our model, the orientation of
any particular part does not
matter, nor does it matter what
shape it is. We are only inter-
ested in the mass of the object
and the position of the c.g.
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Conclusion

Dynamic balance is impor-
tant for precise operating.

A solid conceptual under-
standing  of dynamic balance
will help the operator get any
Steadicam into dynamic bal-
ance quickly and efficiently,
without doing any math.

It will also make it easy to
get the Steadicam back into
dynamic balance if any changes
are made to the configuration.

Understanding dynamic
balance – what it is, what it is
not, and its practical limitations
– will also help the operator
decide how important dynamic
balance is in any situation.

Understanding and using
the math not only helps concep-
tually, but, with the aid of a
handheld computer, it can be an
extremely useful tool on set.

The math is also crucial for
those who modify their equip-
ment and want to be able to get
their rigs in dynamic balance in
all possible configurations.

It is my hope that this
document will help operators
everywhere understand this
important subject.

Jerry Holway,
April 1st, 2003

All one has to do is to keep
the c.g.’s in one vertical plane,
(as we always should do) and
the Steadicam easily can be put
into dynamic balance.

Which is to say, keep the
battery directly behind the
monitor, and aim the camera in
any direction you choose. Start
by placing the camera c.g.
about .75 inch behind the post
(“behind” the post is always in
the vertical plane of the battery
and monitor). Balance as
described on page 12.

It’s easier to operate if the
monitor and camera face in the
same direction or exactly 180˚
from each other.

A fun thing to do

Put your sled into perfect
dynamic balance, then place the
gimbal so that the sled is
neutrally balanced top to
bottom. Now the sled will hang
at any angle and still spin
consistently on the axis of the
central post.

This is even more fun if the
sled is very long, as you can set
the rig panning and also gyrate
the whole thing in huge arcs.

You can move through
space at the same time, and the
Steadicam becomes a really
elegant and magical object.


